Quantile Digest Functions

openLooKeng implements the approx_percentile function with the quantile digest data structure. The underlying data structure, qdigest, is exposed as a data type in openLooKeng, and can be created, queried and stored separately from approx_percentile.

Data Structures

A quantile digest is a data sketch which stores approximate percentile information. The openLooKeng type for this data structure is called qdigest, and it takes a parameter which must be one of bigint, double or real which represent the set of numbers that may be ingested by the qdigest. They may be merged without losing precision, and for storage and retrieval they may be cast to/from VARBINARY.

Functions

merge(qdigest) -> qdigest

Merges all input qdigests into a single qdigest.

value_at_quantile(qdigest(T), quantile) -> T

Returns the approximate percentile values from the quantile digest given the number quantile between 0 and 1.

values_at_quantiles(qdigest(T), quantiles) -> T

Returns the approximate percentile values as an array given the input quantile digest and array of values between 0 and 1 which represent the quantiles to return.

qdigest_agg(x) -> qdigest<[same as x]>

Returns the qdigest which is composed of all input values of x.

qdigest_agg(x, w) -> qdigest<[same as x]>

Returns the qdigest which is composed of all input values of x using the per-item weight w.

qdigest_agg(x, w, accuracy) -> qdigest<[same as x]>

Returns the qdigest which is composed of all input values of x using the per-item weight w and maximum error of accuracy. accuracy must be a value greater than zero and less than one, and it must be constant for all input rows.

有奖捉虫

“有虫”文档片段

0/500

存在的问题

文档存在风险与错误

● 拼写,格式,无效链接等错误;

● 技术原理、功能、规格等描述和软件不一致,存在错误;

● 原理图、架构图等存在错误;

● 版本号不匹配:文档版本或内容描述和实际软件不一致;

● 对重要数据或系统存在风险的操作,缺少安全提示;

● 排版不美观,影响阅读;

内容描述不清晰

● 描述存在歧义;

● 图形、表格、文字等晦涩难懂;

● 逻辑不清晰,该分类、分项、分步骤的没有给出;

内容获取有困难

● 很难通过搜索引擎,openLooKeng官网,相关博客找到所需内容;

示例代码有错误

● 命令、命令参数等错误;

● 命令无法执行或无法完成对应功能;

内容有缺失

● 关键步骤错误或缺失,无法指导用户完成任务,比如安装、配置、部署等;

● 逻辑不清晰,该分类、分项、分步骤的没有给出

● 图形、表格、文字等晦涩难懂

● 缺少必要的前提条件、注意事项等;

● 描述存在歧义

0/500

您对文档的总体满意度

非常不满意
非常满意

请问是什么原因让您参与到这个问题中

您的邮箱

创Issue赢奖品
根据您的反馈,会自动生成issue模板。您只需点击按钮,创建issue即可。
有奖捉虫